#include "material.h" #include "arena.h" #include "hittable.h" #include "utils.h" #include "vec3.h" #include #include bool material_scatter(const Material *material, Ray r, const struct HitRecord *record, Color *attenuation, Ray *scattered) { switch (material->type) { case MATERIAL_LAMBERTIAN: return lambertian_scatter((const Lambertian *)material, r, record, attenuation, scattered); case MATERIAL_METAL: return metal_scatter((const Metal *)material, r, record, attenuation, scattered); case MATERIAL_DIELECTRIC: return dielectric_scatter((const Dielectric *)material, r, record, attenuation, scattered); } return false; } Lambertian *lambertian_create(Color albedo, Arena *arena) { Lambertian *lambertian = arena_alloc(arena, sizeof(Lambertian)); lambertian->type = MATERIAL_LAMBERTIAN; lambertian->albedo = albedo; return lambertian; } bool lambertian_scatter(const Lambertian *lambertian, Ray r, const HitRecord *record, Color *attenuation, Ray *scattered) { (void)r; Vec3 scatter_direction = vec3_add(record->normal, vec3_random_unit_vector()); /* Catch degenerate scatter direction */ if (vec3_is_near_zero(scatter_direction)) scatter_direction = record->normal; *scattered = (Ray){record->p, scatter_direction, r.time}; *attenuation = lambertian->albedo; return true; } Metal *metal_create(Color albedo, double fuzziness, Arena *arena) { Metal *metal = arena_alloc(arena, sizeof(Metal)); metal->type = MATERIAL_METAL; metal->albedo = albedo; metal->fuzziness = fuzziness; return metal; } bool metal_scatter(const Metal *metal, Ray r, const struct HitRecord *record, Color *attenuation, Ray *scattered) { Vec3 reflected = vec3_reflect(vec3_normalize(r.direction), record->normal); assert(metal->fuzziness <= 1); *scattered = (Ray){ record->p, vec3_add(reflected, vec3_mul(metal->fuzziness, vec3_random_in_unit_sphere())), r.time, }; *attenuation = metal->albedo; return vec3_dot(scattered->direction, record->normal) > 0; } Dielectric *dielectric_create(double eta, Arena *arena) { Dielectric *dielectric = arena_alloc(arena, sizeof(Dielectric)); dielectric->type = MATERIAL_DIELECTRIC; dielectric->eta = eta; return dielectric; } static double schlick_reflectance(double cosine, double eta) { double r0 = (1 - eta) / (1 + eta); r0 *= r0; return r0 + (1 - r0) * pow(1 - cosine, 5); } bool dielectric_scatter(const Dielectric *dielectric, Ray r, const struct HitRecord *record, Color *attenuation, Ray *scattered) { *attenuation = (Color){1.0, 1.0, 1.0}; double refraction_ratio = record->front_face ? (1.0 / dielectric->eta) : dielectric->eta; Vec3 unit_direction = vec3_normalize(r.direction); double cos_theta = fmin(vec3_dot(vec3_neg(unit_direction), record->normal), 1.0); double sin_theta = sqrt(1.0 - cos_theta * cos_theta); bool cannot_refract = refraction_ratio * sin_theta > 1.0; Vec3 direction; if (cannot_refract || schlick_reflectance(cos_theta, refraction_ratio) > random_double()) direction = vec3_reflect(unit_direction, record->normal); else direction = vec3_refract(unit_direction, record->normal, refraction_ratio); *scattered = (Ray){record->p, direction, r.time}; return true; }